Older adults generally have lower levels of mental health problems, such as depression and anxiety, compared with younger adults (Fiske et al., 2009; Schuurmans & van Balkom, 2011). One exception to this pattern is found in individuals providing care for a person with dementia or neurodegenerative disease (hereafter referred to as person or people with dementia). Familial caregivers of people with dementia manifest up to four-fold increases in rates of depression and threefold increases in seeking treatment for anxiety compared with same-aged noncaregiving adults (Brodaty & Donkin, 2009; Coope et al., 1995; Cuipers, 2005; Kolanowski et al., 2004). With the worldwide “graying” of the population (by 2050, 11.4% of the U.S. population will be older than 75; Kawas & Brookmeyer, 2001) and the increasing prevalence of dementia with age (44% of individuals between the ages of 75 and 84 have Alzheimer’s disease, the most common form of dementia; Herbert et al., 2013), mental health problems associated with caregiving will be a growing major public health issue with increasing implications for clinical psychology.

Although, as a group, familial caregivers of people with dementia are highly vulnerable to declining mental health, individual caregivers differ considerably. Whereas some find caregiving to be a highly rewarding experience, including feeling enhanced spirituality and
a greater sense of fulfillment and purpose (Abdollahpour et al., 2018), others struggle with the increased burden and strain of caregiving, including being exposed to the suffering of a loved one (Monin & Schulz, 2009; Richardson et al., 2013). This variation among caregivers underscores the importance of identifying factors that are associated with declining mental health in caregivers. Such factors can help identify caregivers who are at heightened risk for developing mental health problems and suggest potential intervention targets to prevent new mental health problems and reduce the severity of existing ones.

Vulnerabilities to Poor Mental Health in Caregivers

Studies on individual differences in the negative effects of familial caregiving have identified specific characteristics belonging to people with dementia. An emerging consensus suggests that greater severity of the behavioral and psychological symptoms (including emotion-related behaviors such as agitation and apathy) of people with dementia are worse for caregiver health than cognitive (e.g., memory loss) or functional (e.g., loss of mobility) symptoms (Ornstein & Gaugler, 2012; Schulz et al., 1995). In our research, for example, we have found that declines in emotional functioning in people with dementia, including reduced empathy (Brown et al., 2018; Brown, Wells, et al., 2020), altered emotional reactivity (Chen et al., 2017; Lwi et al., 2018), and diminished emotion regulation (Otero & Levenson, 2017), are associated with poorer caregiver health and well-being. Together, these findings suggest that declining emotional functioning in people with dementia is an important risk factor for poor mental health outcomes in caregivers.

In addition to these risk factors related to people with dementia, a number of demographic, financial, and social variables have also been linked to poor health in familial caregivers. Meta-analyses suggest that being (a) the spouse of a person with dementia, (b) a woman (i.e., experiencing sexism), (c) a member of a systemically oppressed race (i.e., experiencing racism), (d) low in socioeconomic status (i.e., having fewer resources, experiencing classism), and (e) more socially isolated are all associated with negative outcomes in caregivers (Brodaty & Donkin, 2009; Schulz et al., 1995; Young et al., 2020).

Many studies have robustly characterized the negative psychological effects of caregiving experienced by health care providers and family members of people with dementia (e.g., Kokkonen et al., 2014; Schulz et al., 2020) and characterized familial caregivers’ emotion-related experiences during caregiving (e.g., compassion fatigue, coping strategies to reduce stress; Day & Anderson, 2011; van Knippenberg et al., 2018). However, familial caregivers’ emotional experiences or emotional functioning (which we conceptualize as emotional reactivity, emotion regulation, and empathy; Levenson et al., 2008) have largely not been investigated as a basis for predicting adverse caregiver mental health outcomes. Because of the importance of one’s own emotional functioning in relation to one’s mental health (Gross et al., 2019), we sought to examine this relationship in familial caregivers.

Studies that have examined the relationship between caregiver emotional functioning and their mental health suggest that negative emotional reactivity and poor emotion regulation relate to negative caregiver outcomes. For example, caregiver propensity to experience negative emotions or a negative attitude toward caregiving relates to worse psychological outcomes (Safavi et al., 2017; Shim et al., 2012). We have found that caregivers who have the short-short variant in the serotonin transporter gene, which is thought to be related to greater emotional reactivity (Belsky & Pluess, 2009; Gyurak et al., 2013; Haase et al., 2015), show a relationship between low empathy in the person with dementia and low psychological well-being in the caregiver, whereas others who do not have this variant do not show such an association (Wells et al., 2019). Moreover, work from our laboratory has shown that poor emotion-regulation ability in caregivers relates to their having higher levels of anxiety (Wells et al., 2020). In the present study, we focused on empathy; despite the strong evidence for the important role played by low empathy in the person with dementia in poor caregiver mental health (Brown et al., 2018; Hsieh et al., 2013), empathy in familial caregivers in relation to their own mental health has not been well studied.

Empathy as a Risk Factor for Poor Caregiver Mental Health

The ability to know, feel, and respond appropriately to what others are feeling (Levenson & Ruef, 1992) is often referred to as empathy. Empathy can be broken down into emotional and cognitive facets. Emotional empathy refers to the ability to feel or share others’ emotional states, whereas cognitive empathy refers to the ability to know or understand another person’s emotions (Decety & Jackson, 2006; Preston & de Waal, 2002; Singer & Lamm, 2009; Zaki et al., 2009).

Emotional and cognitive empathy are both beneficial in many contexts (Morelli et al., 2017; Wei et al., 2011). However, in the context of providing care for a loved one undergoing a distressing life experience, these facets of empathy may have quite different relationships with caregiver mental health (Lee et al., 2001). When a person with dementia experiences distress, a caregiver
with high emotional empathy may feel or share the person's distress, which can lead to the caregiver being overwhelmed by the caregiver's own sense of distress, making high emotional empathy problematic for caregivers by increasing their distress vicariously. In contrast, a caregiver with high cognitive empathy may accurately know or understand that the person with dementia has a higher need for care, which can lead to more effective ways of helping the person in their care and to reduced burden for caregivers.

In line with these ideas, professional health care providers with greater emotional empathy are especially prone to share others' distress. When exposed to high levels of negative emotions in stressful environments, providers can develop empathy burnout and emotional exhaustion (Decety & Fotopoulou, 2014; Figley, 2011). On the other hand, greater cognitive empathy (operationalized as perspective-taking or understanding others' emotions using trait empathy measures, such as the Interpersonal Reactivity Index or Jefferson Scale of Empathy; Davis, 1983; Hojat et al., 2001) in professional health care providers (e.g., physicians, nurses) has been associated with beneficial patient outcomes (patient satisfaction, control of hemoglobin A1C in diabetic patients; Blatt et al., 2010; Hojat et al., 2011) and provider outcomes (compassion satisfaction; Gleichgerrcht & Decety, 2013). These tensions between different kinds of empathy are also found in early psychotherapy theory and research (Rogers, 1951, 1957), in which effective psychotherapists were thought to be able to understand clients' emotional states accurately without becoming enmeshed and emotionally overinvolved.

Despite these provocative insights from previous work, researchers have rarely examined familial caregivers' emotional and cognitive empathy in relation to their own mental health. One study found that higher emotional empathy in caregivers was associated with lower life satisfaction and that higher cognitive empathy was associated with greater life satisfaction (Lee et al., 2001). In another study (Jüttenet et al., 2019), higher emotional empathy in caregivers was associated with greater anxiety; cognitive empathy was associated with depression in a curvilinear fashion, such that highest levels of cognitive empathy predicted the lowest levels of depression.

In these two prior studies of the relationship between caregiver empathy and mental health, empathy was measured using self-report inventories, which can be susceptible to several forms of bias (Levenson & Ruef, 1992; Murphy & Lilienfeld, 2019). To our knowledge, no prior studies of caregiver empathy and mental health have used laboratory-based measures of caregiver empathy. Laboratory assessments of emotional empathy typically measure participant responses (physiology, behavior, self-reported emotional experience) to viewing others who are experiencing powerful negative emotions, such as emotional pain or distress (Hein & Singer, 2008; Lamm et al., 2011; Marsh, 2018). Laboratory assessments of cognitive empathy typically ask participants to label or track others' emotions, and accuracy is judged against an external criterion, such as ratings by the target person or a panel of experts (Goodkind et al., 2012; Ickes, 1997; Levenson & Ruef, 1992; Ruef & Levenson, 2007; Zaki et al., 2009). Whereas these laboratory assessments use forms of self-report responses (e.g., ratings of emotional experience in response to viewing others suffering or reporting on what they think someone else feels), these self-report empathy measures capture a more immediate feeling or understanding of others' emotional states. Such responses may be less susceptible to variation in meta-cognitive insight about empathic abilities compared with traditional trait empathy measures (Murphy & Lilienfeld, 2019). Furthermore, because heightened negative emotional reactivity has been independently associated with poor caregiver mental health (Safavi et al., 2017) and because greater emotional reactivity may help individuals feel or understand others' emotional states (Rueckert et al., 2011), accounting for the potential influence of caregivers' emotional reactivity to a negative or aversive stimulus will help determine whether findings are specific to empathy. Applying these approaches could greatly increase understanding of the role that caregiver empathy plays in accounting for individual differences in caregiver mental health.

The Present Study

In the present study, we aimed to understand the relationships between laboratory-based measures of caregiver emotional and cognitive empathy and caregiver mental health measured using standard questionnaires. We measured caregivers' general ability to feel or share others' emotion states (emotional empathy) and to know or understand others' emotional states (cognitive empathy). Emotional empathy was assessed by measuring physiological, behavioral, and self-reported emotional responses to a film depicting others suffering. Cognitive empathy was assessed both by having participants identify the primary emotion experienced by a target character in a film and by having them provide continuous ratings of the valence of a person's changing emotions. To control for individual differences in emotional reactivity, we measured caregivers' self-reported emotional response to an aversive emotional stimulus (a sudden, unexpected loud noise) and used it as a covariate in our analyses. By examining laboratory measures of emotional and cognitive empathy in relation to caregiver mental health, our study has the
potential to further caregiving research by identifying a specific aspect of caregiver emotional functioning that may place caregivers at greater risk for developing poor mental health.

Our primary hypothesis was that greater emotional empathy in caregivers would be associated with worse caregiver mental health. We reasoned that caregivers with greater emotional responses to the suffering of others in our laboratory task would also have greater emotional responses to the declines and suffering of the person with dementia who is in their care. We reasoned that greater sensitivity to the suffering of others, combined with the other stressors and burdens involved in caregiving, would create a fertile breeding ground for symptoms of anxiety and depression. Because cognitive empathy does not engender this kind of additional suffering, we did not expect greater cognitive empathy in our laboratory tasks to be related to worse caregiver mental health.

We did not have a priori hypotheses as to which aspect of emotional empathy would be most strongly associated with caregiver mental health. Because we conceptualize emotional responses as having physiological, behavioral, and self-report components (Levenson et al., 2008) and because laboratory measures of emotional empathy have not yet been examined in relation to caregiver mental health, we wanted to determine which aspect of emotional empathy would be most strongly related to caregiver mental health.

Method

Participants

Seventy-eight people with dementia and their familial or close caregivers participated in a study of emotional functioning at the Berkeley Psychophysiology Laboratory at the University of California, Berkeley (UCB). Participants were recruited at the Memory and Aging Center at the University of California, San Francisco (UCSF), where individuals with dementia or neurodegenerative disease underwent a full diagnostic evaluation, including neurological, neuropsychological, and neuroimaging assessment. At the UCSF assessment, caregivers were told about the Berkeley study and, if they expressed interest, were subsequently contacted to schedule a laboratory session. All participants, or their legal guardians when appropriate, provided consent for their participation. All procedures for obtaining consent and all study procedures were approved by the Committee for the Protection of Human Subjects at UCB.

Caregivers were 64.5 years old on average, predominantly spouses of people with dementia seen at UCSF (92.3%), women (60.3%), White (83.3%), and highly educated (71.7% with at least 16 years of education). At UCSF, people with dementia were diagnosed according to consensus criteria (Armstrong et al., 2013; Budka et al., 1995; Gorno-Tempini et al., 2011; Klockgether, 2010; Litvan et al., 1996; McKeith, 2004; McKhann et al., 2011; Rascovsky et al., 2011). The sample of 78 people with dementia included (a) 33 with frontotemporal dementia (FTD), which includes three clinical syndromes that affect socioemotional and language functioning (16 behavioral variant FTD, nine nonfluent variant primary progressive aphasia, eight semantic variant primary progressive aphasia); (b) 11 with Alzheimer’s disease (AD), which predominantly affects memory functioning; (c) 25 with diagnoses that were characterized by motor symptoms, including nine with corticobasal syndrome, two with dementia with Lewy body disease, one with Parkinson’s disease, one with prion disease, 11 with progressive supranuclear palsy, and one with spinocerebellar ataxia; and (d) nine at risk for developing dementia, including five with mild cognitive impairment (MCI) and four relatives of a person with FTD. For more details on demographics of caregivers and people with dementia, see Table 1.

Procedure

Upon arrival at UCB, all participants (people with dementia and caregivers) reviewed the procedures for the day and completed the consent forms. People with dementia and caregivers were then seated in separate rooms, and noninvasive physiological sensors (see more details below) were attached to participants to monitor their physiological responses. Participants sat in a chair facing a 21-in. color monitor. Video recordings of participants’ heads and torsos were obtained using a remote-controlled camera that was partially hidden from view. Participants completed a daylong laboratory session designed to provide a comprehensive assessment of multiple aspects of emotional functioning, including emotion recognition, emotional reactivity, and emotion regulation (Levenson et al., 2008).

In the present study, we focused on caregiver data from four specific tasks (described below), including assessments of cognitive empathy (two tasks), emotional empathy, and emotional reactivity.

Apparatus and measures

Rating dial. The rating dial (Ruef & Levenson, 2007) consisted of a small metal box with a knob and attached pointer that rotated through a 180° semicircle. The semicircle was divided into nine equal divisions labeled with descriptors of “very bad” (shown with a schematic frowning face) at the far left, “neutral” (shown with a schematic
neutral face) in the middle, and “very good” (shown with a schematic smiling face) at the far right. The dial generated a voltage that reflected the dial position; a computer sampled the voltage every 3 ms and calculated the average dial position every second. The rating dial was located near the participant’s dominant hand.

Physiology. In line with psychophysiology standard practices (Mendes, 2009), physiological measures were monitored continuously to capture reactivity (e.g., differences in physiological activity during resting baseline periods and trial periods) for various tasks. We used a system consisting of Biopac amplifier modules, a computer with analog-to-digital capability, and an online data acquisition and analysis software package (written by R. W. Levenson). The program computed second-by-second averages for the following measures: (a) heart rate—interbeat interval was the time interval in milliseconds between successive R waves, using Beckman miniature electrodes with Redux paste that were placed on opposite sides of the participants’ chest; (b) finger pulse amplitude—a photoplethysmograph (UFI, Morro Bay, CA) recorded the amplitude of blood volume in the finger using a photocell taped to the distal phalanx of the index finger of the nondominant hand; (c) finger pulse-transmission time—the time interval in milliseconds was calculated between the R wave of the electrocardiogram and the upstroke of the peripheral pulse at the finger site, recorded from the distal phalanx of the index finger of the nondominant hand; (d) ear pulse-transmission time—a photoplethysmograph (UFI) recorded the volume of blood in the ear to measure transmission time between the R waves of the electrocardiogram signal and the upstroke of pulse at the ear; (e) systolic and diastolic blood pressure—a cuff placed on the ring finger of the participant’s nondominant hand calculated blood pressure on every heartbeat using a finger blood pressure monitor (Ohmeda 2300 Finapres; Finapres, Englewood, CA).

Table 1. Sociodemographic Characteristics and Clinical Variables

<table>
<thead>
<tr>
<th>Statistic</th>
<th>PWDs</th>
<th>Caregivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>$M = 62.60$ ($SD = 8.69$)</td>
<td>$M = 64.52$ ($SD = 9.26$)</td>
</tr>
<tr>
<td>Gender (% women)</td>
<td>43.3</td>
<td>60.3</td>
</tr>
<tr>
<td>Race/ethnicity (n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native American/Alaska Native</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>East or Southeast Asian/Asian American</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Black/African American/Afro-Caribbean</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Latine/Chicane/Hispanic</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Multiracial</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Native Hawaiian/Pacific Islander</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>White</td>
<td>63</td>
<td>65</td>
</tr>
<tr>
<td>Caregiver education (n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>—</td>
<td>7</td>
</tr>
<tr>
<td>2-year college</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>4-year college</td>
<td>—</td>
<td>29</td>
</tr>
<tr>
<td>Master’s degree</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>PhD, MD, or other professional degree</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td>Caregivers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relationship to the PWD (% spouse)</td>
<td>—</td>
<td>92.3%</td>
</tr>
<tr>
<td>Severity of anxiety symptoms (BAI)</td>
<td>—</td>
<td>$M = 7.06$ ($SD = 7.60$)</td>
</tr>
<tr>
<td>Severity of depression symptoms (CES-D)</td>
<td>—</td>
<td>$M = 12.12$ ($SD = 9.24$)</td>
</tr>
<tr>
<td>PWD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTD</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>AD</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td>Motor disease</td>
<td>25</td>
<td>—</td>
</tr>
<tr>
<td>MCI or family member of person with FTD</td>
<td>9</td>
<td>—</td>
</tr>
<tr>
<td>Disease severity (CDR)</td>
<td>$M = 3.96$ ($SD = 2.71$)</td>
<td>—</td>
</tr>
<tr>
<td>Cognitive functioning (MMSE)</td>
<td>$M = 24.82$ ($SD = 4.81$)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: $N = 78$. Values are ns unless otherwise noted. PWD = person with neurodegenerative disease or dementia; BAI = Beck Anxiety Inventory (Steer & Beck, 1997); CES-D = Center for Epidemiological Studies Depression Scale (Radloff, 1977); FTD = frontotemporal dementia; AD = Alzheimer’s disease; MCI = mild cognitive impairment; CDR = Clinical Dementia Rating Scale (Morris, 1993); MMSE = Mini-Mental State Examination (Folstein et al., 1975).
CO); (f) skin conductance level—the electrical conductance of the skin was computed using a constant voltage device to pass voltage between Beckman regular electrodes on the ring and index fingers of the nondominant hand to calculate the sweat response; (g) somatic activity—the amount of overall movement was computed using an electromechanical transducer attached to the platform of the participant's chair; and (h) respiration rate—the intercycle interval was the time interval in milliseconds between breaths calculated using a pneumatic bellows stretched around the thoracic region.

These nine measures were selected to sample the major autonomic (cardiovascular, electrodermal, respiratory) and somatic systems associated with emotional responding. For each measure, the average of the resting baseline period was subtracted from the average obtained during the task period to create a difference score for physiological reactivity (length of baseline and task period detailed below). Averages for each physiological reactivity score were normalized, reverse-scored if necessary (so that larger values reflected greater physiological arousal), and then averaged. The use of this kind of composite measure, which helps control for Type I error, has been described in detail in several of our other publications (Sturm et al., 2006; Verstaen et al., 2016).

Facial behavior. Trained coders rated recordings of participants' facial behavior using the Emotional Expressive Behavior coding system (Gross & Levenson, 1993). Facial behavior was coded second by second for nine emotional facial behaviors (anger, disgust, happiness/amusement, contempt, sadness, embarrassment, fear, surprise, and confusion) on an intensity scale ranging from 0 to 3.

Laboratory tasks

Cognitive empathy: emotion-recognition task. Participants watched a series of 11 film clips that were developed to assess ability to recognize specific emotions (Goodkind et al., 2015). Each film clip (approximately 35 s in length) showed a character experiencing a positive (affection, amusement, calmness, enthusiasm), negative (anger, disgust, fear, sadness), or self-conscious emotion (embarrassment, pride, shame) and was preceded by a 30-s baseline period during which an "X" was displayed on the monitor. After watching each film clip, participants were shown a picture of the target character displaying a neutral expression and were asked to identify the emotion the target character felt most strongly from a list of 11 emotions.

Accuracy on this task was calculated by summing correct answers across film clips, for a minimum score of 0 and a maximum score of 11.

Emotional-empathy task: film depicting suffering. Participants watched a film clip that has been found to induce concern and distress in young, middle-aged, and older adults (Sze, Gyurak, et al., 2012). The film consists of images of people in Darfur suffering from starvation and disease. The film lasted 120 s and was preceded by a 60-s baseline period during which an "X" was displayed on the monitor. After the film, participants rated (on a scale from 0 to 2) how much they felt 10 positive and negative emotions (affection, fear, amusement, anger, shame, disgust, embarrassment, enthusiasm, pride, surprise) as well as concern and distress.

Physiological responses to the film were computed by subtracting the average level of each measure during the prefilm baseline from the average level during the last 80 s of the film, which had previously been found to produce the most intense emotional facial responses (Sze, Gyurak, et al., 2012). The responses were combined into a composite score as described above. Facial behavior was also coded during the final
80 s of the film. A composite measure of negative facial behavior was obtained by summing the intensity scores for seven negative emotion codes (sadness, confusion, anger, fear, surprise, contempt, and disgust). Intercoder reliability was high (intraclass correlation coefficient = .83). Self-reported emotional experience was calculated by summing the total reported intensity for seven negative and two caring emotions (fear, anger, surprise, sadness, disgust, shame, distress, affection, concern).

Emotional reactivity: acoustic-startle task. Participants were told to relax and watch the computer screen. An “X” was displayed on the screen when the prettrial baseline began and remained in view for 60 s. A loud startle stimulus (115-dB, 100-ms burst of white noise) was then presented without warning using speakers located behind the participant. Participants sat through a 60-s poststartle period during which an “X” was presented on the screen. After the poststartle period, participants rated on a scale from 0 to 2 how much they felt 10 positive and negative emotions (affection, fear, amusement, anger, shame, disgust, embarrassment, enthusiasm, pride, surprise). We used this task, which has been used previously with participants of all ages (Levenson et al., 2008; Soto et al., 2005; Sturm et al., 2006), to provide a measure of emotional reactivity to an aversive stimulus that is experienced directly rather than vicariously (as with the film depicting suffering).

Self-reported emotional experience was calculated by summing the total intensity for the seven emotions that are typical responses to the startle task (Sturm et al., 2006): surprise, sadness, anger, fear, disgust, embarrassment, and amusement. Because laboratory sessions ended early as a result of participant fatigue or caregivers declining to participate in all tasks, data on this task were obtained from only 68 participants. Physiology and facial behavior were also recorded during this task; however, these data were not used in analyses (see below).

Correlations between laboratory tasks. Table 2 displays correlations between laboratory measures. Figure S1 in the Supplemental Material available online displays the distributions of these laboratory measures.

Validity for laboratory tasks. The emotion-recognition task has criterion validity because it is correlated with performance on standardized emotion-recognition tasks using standardized photographs of emotional facial expressions (Goodkind et al., 2015). Whereas the emotion-recognition film task captures recognition of discrete emotion states, the dynamic-tracking task captures recognition of emotional valence over time. We expect these two different cognitive empathy tasks to capture different aspects of recognizing emotion. The dynamic-tracking task shows discriminant validity because it is not correlated with performance on the emotion-recognition task (as noted above). This discriminant validity was also demonstrated in a previous study in which performance on the dynamic-tracking task is not correlated with performance on recognizing emotion from standardized photographs of emotional facial expressions (Sze, Gyurak, et al., 2012). The emotional-empathy task has content validity because the film was selected to induce negative and caring emotions for others, emotional experiences this film has been shown to effectively induce (Lwi et al., 2019; Sze, Gyurak, et al., 2012). Furthermore, the emotional-reactivity task has content validity because responses to the acoustic startle have well-characterized and well-documented emotional responses (P. Ekman et al., 1985; Roberts et al., 2004; Sturm et al., 2006).

Other measures

Disease severity in people with dementia. At UCSF, the Clinical Dementia Rating Scale (CDR) was completed using a semistructured interview conducted by clinicians with caregivers (Morris, 1993). The CDR assesses functional performance in six domains: (a) memory, (b) orientation,
(c) judgment and problem-solving, (d) community affairs, (e) home and hobbies, and (f) personal care. Scores in each domain range from 0 (none) to 3 (severe) and are summed to create a composite score, ranging from 0 to 18; higher scores indicate greater disease severity. This measure is often used to stage disease severity in individuals with dementia (Morris, 1997; M. M. Williams et al., 2013). The CDR has been validated against neuropathology data (Berg et al., 1993) and demonstrates good reliability (Burke et al., 1988).

Cognitive impairment in people with dementia. At UCSF, the Mini-Mental State Examination (MMSE) was administered to assess the severity and progression of cognitive impairment (Folstein et al., 1975). This exam evaluates several domains of cognitive functioning: (a) orientation, (b) visuospatial construction, (c) language, (d) concentration or attention, (e) working memory, and (f) memory recall. A total score is calculated, ranging from 0 to 30; lower scores indicate greater cognitive impairment. This measure is often used to detect dementia and stage disease course (O’Bryant, Humphreys, et al., 2008; O’Bryant, Waring, et al., 2008). The MMSE has demonstrated good reliability and validity for grading cognitive impairment (Tombaugh & McIntyre, 1992).

Caregiver mental health. Within a month after the laboratory session at UCB, caregivers completed two online questionnaires to assess their mental health. Depression was measured using the Center for Epidemiological Studies Depression Scale (CES-D; Radloff, 1977), which asks respondents to rate themselves over the past week on a scale from 0 (rarely or none of the time) to 3 (most or all of the time) for 20 items (e.g., “I felt sad,” “I felt lonely”). Four items were reverse-scored, and then all items were summed; higher scores indicate greater levels of depression symptoms. The CES-D has been previously validated for measuring depression in older adults (Beekman et al., 1997; Haringsma et al., 2004). Anxiety was measured using the Beck Anxiety Inventory (BAI; Steer & Beck, 1997), which asks respondents to rate themselves over the past month on a scale from 0 (not at all) to 3 (a lot) for 21 items (e.g., “Unable to relax”). Scores were summed; higher scores indicate greater levels of anxiety symptoms. The BAI has demonstrated reasonable test-retest reliability and validity when used with individuals with anxiety disorders (Beck et al., 1988; Fydrich et al., 1992).

Because the CES-D and BAI were significantly correlated in our sample, $r = .68$, $t(76) = 8.14$, $p < .001$, 95% CI = [54, .79], and to reduce the risk of Type I errors from multiple comparisons, a composite of caregiver mental health symptoms was computed by z-scoring the CES-D and BAI and averaging these z-scores. Higher scores on the composite of mental health indicate greater severity of averaged depression and anxiety symptoms.

Sensitivity power analyses

Because we recruited a convenience sample to maximize our sample size, we could not conduct a priori power analyses. To determine whether our study had adequate power to detect effects, we conducted two sensitivity power analyses. For analyses with our full sample size of 78, a maximum of five predictors, an α level of .05, and 80% power, we computed a medium effect size (f^2) of 0.18 (Cohen, 1988). Only 68 participants completed the acoustic-startle task (see above). For analyses with a sample size of 68, a maximum of five predictors, α level of .05, and 80% power, we computed a medium effect size (f^2) of 0.21. Thus, our study was adequately powered to detect medium effect sizes.

Analytic approach

Bivariate correlations were conducted to examine (a) the relationship between caregiver cognitive empathy and caregiver mental health and (b) the relationship between caregiver emotional empathy and caregiver mental health. Then, if significant associations were found, linear regression analyses were conducted with inclusion of covariates, including relevant demographic or clinical variables (identified below) and caregiver emotional reactivity. We focused on independent significant associations from correlations to avoid potential suppressor effects in multivariate linear regression (Beckstead, 2012). Physiology, facial behavior, or self-reported emotional responses to the emotional-reactivity task were used as a covariate, depending on the type of empathy response (i.e., physiological, behavioral, or self-report) that emerged as being significantly associated with caregiver mental health.

Identifying covariates

We calculated correlations between caregiver demographic variables or the person with dementia’s clinical variables and caregiver mental health to identify covariates to include in our primary analyses of the relationship between caregiver emotional functioning (cognitive empathy, emotional empathy, emotional reactivity) and caregiver mental health. Potential covariates included caregiver age; caregiver gender (0 = man, 1 = woman); caregiver race, as a crude index for systemic oppression on the basis of race (given the small number of people of color; this variable was coded as 0 = White, 1 = people of color); caregiver education (0 = high school,
1 = 2-year college, 2 = 4-year college, 3 = master’s degree, 4 = MD, PhD, or other professional degree; caregiver relationship to the person with dementia (1 = spouse, 0 = nonspouse); diagnosis of the person with dementia (FTD, AD, or motor diseases; three variables coded as 1 = yes, 0 = no); disease severity in the person with dementia; and cognitive functioning in the person with dementia.

Caregiver race (non-White), greater disease severity in the person with dementia, and lower cognitive functioning in the person with dementia were correlated with worse caregiver mental health in our sample; thus, they were included as covariates in analyses—race: \(r = .23, t(76) = 2.05, p = .04, 95\% \text{ CI} = [.007, .43] \); disease severity: \(r = .37, t(76) = 3.57, p < .001, 95\% \text{ CI} = [.17, .55] \); cognitive functioning: \(r = -.28, t(76) = -.250, p = .01, 95\% \text{ CI} = [−.47, −.06] \).

Caregiver age, gender, education, relationship to the person with dementia, and diagnosis variables were not correlated with caregiver mental health in our sample; thus, they were not included as covariates in analyses—caregiver age: \(r = -.19, t(76) = -1.60, p = .11, 95\% \text{ CI} = [-.41, .05] \); caregiver gender: \(r = .18, t(76) = 1.48, p = .14, 95\% \text{ CI} = [-.06, .40] \); caregiver education: \(r = .02, t = 0.17, p = .87, 95\% \text{ CI} = [-.20, .24] \); caregiver relationship: \(r = -.10, t = -0.85, p = .40, 95\% \text{ CI} = [-.31, .13] \); FTD diagnosis: \(r = -.02, t = -0.15, p = .88, 95\% \text{ CI} = [-.24, .21] \); AD diagnosis: \(r = -.07, t = -0.62, p = .54, 95\% \text{ CI} = [-.29, .15] \); motor-disease diagnosis: \(r = .10, t = 0.91, p = .37, 95\% \text{ CI} = [-.12, .32] \).

Results

Caregiver cognitive empathy and caregiver mental health

Caregiver accuracy was not related to caregiver mental health on either the emotion-recognition task, \(r = .13, t(76) = 1.12, p = .27, 95\% \text{ CI} = [-.10, .34] \), or the dynamic-tracking task, \(r = -.01, t = -0.10, p = .91, 95\% \text{ CI} = [-.23, .21] \), was related to caregiver mental health.

Caregiver emotional empathy and caregiver mental health

Caregiver self-reported emotional experience to the film depicting suffering was associated with caregiver mental health such that greater experience of negative and caring emotions was related to lower mental health, \(r = .29, t(76) = 2.66, p = .009, 95\% \text{ CI} = [.07, .48] \) (see Fig. 1). In contrast, caregiver physiological responses, \(r = -.14, t(76) = -1.24, p = .22, 95\% \text{ CI} = [-.35, .09] \), and
facial behavior responses, $r = -0.07$, $t = -0.61$, $p = 0.55$, 95% CI $= [-0.29, 0.16]$, to the film depicting suffering were not related to caregiver mental health.2

We evaluated the robustness of the relationship between greater emotional empathy (i.e., self-reported emotional experience to film depicting suffering) and lower caregiver mental health in two ways: (a) accounting for covariates and (b) accounting for covariates and for caregiver emotional reactivity (i.e., self-reported emotional experience to the acoustic-startle task).

Accounting for covariates. We conducted a linear regression accounting for caregiver race, disease severity in the person with dementia, and cognitive functioning in the person with dementia (the variables found to be independently predictive of caregiver mental health above). When these variables were entered as covariates, greater emotional empathy (self-reported emotional experience) was still related to worse caregiver mental health, $t(73) = 2.62$, $\beta = 0.25$, $p = 0.01$.

Accounting for covariates and caregiver emotional reactivity. We conducted a linear regression accounting for self-reported emotional experience to the acoustic-startle task as well as caregiver race, disease severity in the person with dementia, and cognitive functioning in the person with dementia. In this analysis, caregiver emotional reactivity was not associated with caregiver mental health, $t = 0.59$, $\beta = 0.06$, $p = 0.55$. However, greater emotional empathy (self-reported emotional experience) remained associated with worse caregiver mental health, $t(62) = 2.74$, $\beta = 0.30$, $p = 0.008$.

Caregiver emotional empathy and mental health: depression and anxiety considered separately

Although measures of caregiver depression and anxiety were highly correlated in our sample, for transparency, we examined relationships between caregiver emotional empathy (self-reported emotional experience) and depression and anxiety considered separately. Linear regressions accounting for caregiver emotional reactivity, caregiver race, disease severity in people with dementia, and cognitive functioning in people with dementia revealed that greater emotional empathy was associated with greater depression symptoms, $t(62) = 2.97$, $\beta = 0.33$, $p = 0.004$, and with greater anxiety symptoms at trend level, $t(62) = 1.94$, $\beta = 0.23$, $p = 0.057$. In contrast, caregiver emotional reactivity was not associated with either depression, $t = -0.28$, $\beta = -0.03$, $p = .78$, or anxiety, $t(62) = 1.26$, $\beta = 0.14$, $p = 0.21$, symptoms.

Discussion

In the present study, we examined the relationship that laboratory measures of emotional and cognitive empathy have with mental health in a sample of caregivers of people with dementia. Results were partially consistent with our hypothesis that laboratory measures of emotional empathy would be associated with poor caregiver mental health. Using a composite measure of depression and anxiety symptoms, we found an association between one of the three emotional empathy measures (self-reported emotional experience to the emotional-empathy task) and caregiver mental health. Given the heightened depression and anxiety found in caregivers of people with dementia (Brodaty & Donkin, 2009; Coope et al., 1995; Cuijpers, 2005; Kolanowski et al., 2004) and the increasing prevalence of caregiving for people with dementia as a result of the aging population (Schulz et al., 2020), this finding suggests an important risk factor and possible intervention target for clinical psychologists and other health professionals who are concerned with late-life mental health issues.

Emotional empathy and caregiver mental health

Historically, clinical psychologists have considered empathy to be a highly desirable quality that is associated with desirable outcomes (Elliott et al., 2018; Rogers, 1957). However, in the present study, we found the opposite: High levels of a particular aspect of empathy (i.e., emotional empathy, as measured by self-reported negative and caring emotions in response to viewing the suffering of others) were associated with an undesirable outcome (i.e., greater severity of mental health symptoms) in caregivers of people with dementia. Of course, these findings are not without precedent; rather, they are consistent with prior research indicating that high levels of emotional empathy are associated with poorer mental health in the context of others’ suffering. For example, prior research has found that too much empathy leads to empathy burnout and emotional distress in nurses, doctors, and other health care providers who regularly interact with distressed or suffering individuals (Decety & Fotopoulou, 2014; Figley, 2011). Likewise, an optimal level of empathy (i.e., not too much or too little) is thought to be critical for having a better psychological distinction between oneself and another’s distress (E. Ekman & Halpern, 2015). Having too much emotional empathy runs the risk of reducing this psychological distinction (Lee et al., 2001) and is considered an important cause of overidentification with patients in health care professionals (Decety
Our findings similarly exemplify the adages that “it depends on the context” and that one can have “too much of a good thing.” In the context of caring for a person with dementia, caregivers high in emotional empathy may become overly enmeshed, taking on the added burden of feeling the distress and suffering experienced by a loved one who is dealing with the ravages of a cruel, progressive, and ultimately terminal illness. For these caregivers, chronically experiencing a combination of their own distress and that of the person in their care could greatly heighten risk for developing symptoms of depression and anxiety.

Previous psychological and neuroscience research suggests that individuals who can regulate their own emotional responses to others’ suffering (and thus have optimal levels of emotional responses) can express greater concern for others instead of feeling overwhelming emotional distress (Decety & Meyer, 2008; Ho et al., 2014; A. Williams et al., 2014). Caregivers may similarly benefit from evidence-based interventions that help them manage their negative emotional responses to the suffering of others to help maintain the distinction between self and other. Emotional responses, including those elicited as a function of empathy, are amenable to influence by emotion-regulation processes (Thompson et al., 2019; Zaki, 2014; Zaki et al., 2008). One well-studied regulation strategy is to engage in self-distancing, a form of adaptive self-reflection in which a fly-on-the-wall approach is taken to process one’s emotional experiences (Kross et al., 2012; Verduyn et al., 2012). This approach has been demonstrated to be helpful in the context of relationships (Ayduk & Kross, 2010) in which high self-distancers respond to negative emotions from partners with less reciprocation of negative emotions, thus allowing for reconstrual of difficult situations. Therapists who use a similar distancing approach (e.g., imagining greater psychological distance from overwhelming client distress and the client themselves) reported greater psychological well-being (Weilenmann et al., 2018).

In the context of a familial caregiver and person with dementia, a caregiver may be advised to observe mentally their own emotional responses “from afar” in response to the person with dementia’s distress. Slowing down the pace and reducing the magnitude of the immediate negative emotional responses may reduce distress levels and allow for greater psychological distinction between caregivers and people with dementia. Of course, compared with health care professionals and their patients, familial caregivers and people with dementia are likely to share a much longer, more intimate, and more personal history. This can make separating oneself from the person with dementia’s suffering particularly difficult, especially for caregivers who are high in emotional empathy. Future research should examine whether helping caregivers who are high in emotional empathy learn to regulate their emotions to others’ suffering and maintain distinction between self and other has preventive and/or therapeutic value for protecting mental health.

Robustness of findings

Our findings were robust to a number of covariates found to be related to caregiver mental health (caregiver race, disease severity in people with dementia, and cognitive functioning in people with dementia) and a measure of caregiver emotional reactivity (self-reported emotional experience to an acoustic-startle stimulus). There is a wealth of research on caregivers’ demographic variables and people with dementia’s clinical variables that are associated with poor caregiver mental health (Cooper et al., 2007; Schulz et al., 2020). However, even after accounting for these potential influences in our sample, the relationship between caregiver emotional empathy and mental health remained. Moreover, several prior studies have found that caregivers who experience more negative emotions are more vulnerable to negative mental health outcomes (Brodaty & Donkin, 2009; Safavi et al., 2017). However, in our study, even after controlling for caregivers’ emotional responses to an aversive stimulus, the relationship between caregiver emotional empathy and mental health remained. We conclude from these findings that in our study sample, emotional empathy plays an important role in caregivers’ mental health above and beyond the role of other well-established factors related to patient functioning, caregiver demographics, and caregiver emotional reactivity.

Limited to self-report aspect of emotional empathy

Note that among the multiple aspects of caregivers’ emotional empathy (physiological, behavioral, self-reported emotional experience) that we assessed, only greater self-reported emotional experience in response to a film depicting suffering was associated with worse caregiver mental health. This specificity in findings may have implications for identifying caregivers most at risk for poor mental health. Because emotional empathy behavior was not associated with caregiver mental health, it may be difficult for clinicians and outside observers to recognize if caregivers are not faring well. Clinicians and outside observers may ask caregivers directly about their emotional experiences (particularly those that are relevant to another person’s suffering) to identify those who may be at greater risk.
Although physiological, behavioral, and self-report aspects of emotional responding can cohere in certain situations (Brown, Van Doren, et al., 2020; Mauss et al., 2005), this is certainly not always the case (Evers et al., 2014; Reizenzein et al., 2013). We have argued previously that self-reported emotional experience is much more malleable to contextual influences than physiological and expressive aspects of emotion (e.g., culture; Levenson et al., 2007; Soto et al., 2005). Self-reported emotional experience arises from complex appraisals that include both contextual and interoceptive processes (Levenson, 1999, 2003; Levenson et al., 2017) and thus may tap into some of the same processes that contribute to symptoms of anxiety and depression. Consequently, although some caregivers of people with dementia may respond to a film depicting suffering with heightened facial expressions of negative emotions and autonomic nervous system activation, it may be those caregivers who report actually “feeling” high levels of negative emotions and concern for whom the worries, loneliness, burdens, and grief associated with caregiving are most profound and developing symptoms of depression and anxiety is most likely. Conversely, caregivers who have more severe depression and anxiety symptoms may be more likely to report “feeling” high levels of negative emotions and concerns for others.

Cognitive empathy and caregiver mental health

In contrast to the robust relationship we found between greater emotional empathy and worse mental health in caregivers of people with dementia, we found no relationship between either of the two measures of cognitive empathy and caregiver mental health. Prior research suggests that professional health care providers (e.g., physicians, nurses) with greater cognitive empathy experience better psychological outcomes by increasing emotional distance and focusing on how the distressed person feels rather than sharing that distress (Cusi et al., 2011; E. Ekman & Halpern, 2015; Halpern, 2003). Although a similar association could be expected for familial caregivers who are high in cognitive empathy, we found no evidence supporting this in our sample of caregivers and people with dementia. Nonetheless, additional research with caregivers for individuals with other disorders, at other stages of caregiving, and with yet other measures of cognitive empathy would be worthwhile.

Causality

Because in the present study we used a cross-sectional design, findings raise important questions regarding the direction of influence. It is impossible to know from our data whether caregiver emotional empathy influences caregiver mental health or vice versa. Indeed, similar associations between emotional empathy and mental health have been found in research for individuals with depression, anxiety, and other forms of psychopathology. For example, individuals with more severe psychopathology symptoms have been shown to have greater emotional empathy (O’Connor et al., 2002; Thoma et al., 2015; Tibi-Elhanany & Shamay-Tsoory, 2011) and have trouble effectively regulating their emotional states (Sheppes et al., 2015; Thompson et al., 2019). Future research using longitudinal and experimental designs would be critical for understanding the directional influences between caregiver emotional empathy and caregiver mental health.

Strengths and limitations

Strengths of this study include using laboratory-based measures of emotional and cognitive empathy; measuring physiological, behavioral, and self-reported aspects of emotional empathy; including two measures of cognitive empathy (emotion-recognition and dynamic-tracking tasks); examining and accounting for demographic factors, characteristics of the people with dementia, and caregiver emotional reactivity, all of which could influence caregiver mental health; and including caregivers who were providing care for people with dementia with heterogeneous diagnoses to increase generalizability.

Limitations of the study include using self-report measures of caregiver anxiety and depression rather than structured clinical diagnostic interviews; using stimuli that activated different emotions across cognitive-empathy and emotional-empathy tasks rather than consistently using stimuli showing others’ suffering, which limits our ability to compare across facets of empathy; difficulty ruling out spontaneous emotion regulation used by caregivers, which may have affected their emotional responses to our laboratory tasks; using a cross-sectional design that limits ability to determine causal and directional influences; lack of comparison groups (e.g., caregivers of people with other illnesses, control participants); and lack of diversity in race, socioeconomic status, and type of relationship to the people with dementia in our sample, which limit the generalizability of our findings.

Conclusions

We examined the relationships between two facets of empathy and mental health in a sample of familial caregivers of people with a number of different kinds of dementia and neurodegenerative diseases. Our findings...
indicate that greater emotional empathy in caregivers (as indicated by greater self-reported experience of negative emotions and concern in response to viewing the suffering of others) is associated with worse mental health (i.e., greater severity of depression and anxiety symptoms) in caregivers. Given the enormous number of people with dementia and family caregivers worldwide and projections that this number will increase dramatically in the future, depression, anxiety, and other mental health problems in caregivers will undoubtedly become an increasingly important concern for research, assessment, and intervention agendas for clinical psychology. Recognizing factors that increase caregiver vulnerability to poor mental health can help identify caregivers at heightened risk who may benefit from existing interventions and point toward targets for developing new interventions. Our findings suggest that it might be useful to design and evaluate interventions that help caregivers of people with dementia regulate their emotional responses to the distress of the person in their care. Given findings that poor mental health in caregivers is also associated with greater mortality in people with dementia (Lwi et al., 2017), finding ways to reduce mental health problems in caregivers could greatly improve the quality of life for both caregivers and the people in their care.

Transparency

Action Editor: Stefan G. Hofmann
Editor: Kenneth J. Sher

Author Contributions

A. Y. Hua and R. W. Levenson developed the study concept. All of the authors contributed to the study design. A. Y. Hua performed data analysis and interpretation under supervision of R. W. Levenson. Testing and data collection were performed by A. Y. Hua, J. L. Wells, and C. L. Brown. A. Y. Hua drafted the manuscript, and R. W. Levenson, J. L. Wells, and C. L. Brown provided critical revisions. All of the authors approved the final manuscript for submission.

Declaration of Conflicting Interests

The author(s) declared that there were no conflicts of interest with respect to the authorship or the publication of this article.

Funding

Preparation of this manuscript was supported by National Institute on Aging Grants 4R01-AG041762-05 and 1R01-AG062639-01 (to R. W. Levenson).

ORCID iD

Alice Y. Hua https://orcid.org/0000-0002-0298-327X

Acknowledgments

We thank our participants, Scott Newton, Deepak Paul, and all of the past and present members of the Berkeley Psychophysiology lab.

Notes

1. Test–retest reliability for laboratory tasks: Given the nature of our participant pool (diseases are progressive in people with dementia), we typically have only one opportunity to enroll people with dementia and their caregivers in our laboratory study. Thus, we do not have the ability to demonstrate test–retest reliability of our laboratory tasks with this sample.

2. To ensure we did not inadvertently influence our results by removing caregiver emotional-empathy task measures from our analyses too soon, we conducted an additional analysis to include caregiver physiological responses and facial behavior to the emotional-empathy task as additional covariates. We conducted a linear regression accounting for caregiver race, disease severity in the person with dementia, cognitive functioning in the person with dementia, caregiver physiological response, and caregiver facial behavior response as covariates. When these variables were entered as covariates, greater emotional empathy (self-reported emotional experience) was still related to worse caregiver mental health, $t(71) = 2.60, \beta = 0.26, p = .01$ whereas caregiver physiological responses to the emotional-empathy task, $t(71) = -0.52, \beta = -0.05, p = .61$, and caregiver facial behavior to the emotional empathy task were still not associated with caregiver mental health, $t(71) = -0.72, \beta = -0.07, p = .47$.

3. We thank and recognize Reviewer 2 as the source of this comment.

References

Cognitive Empathy

